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Oesophagitis secondary to gastro-oesphageal reflux
disease is the most common medical condition in western
countries with 30% of adults complaining of heartburn at
least once per month, a third of whom will have
endoscopic evidence of oesophagitis.1,2 40% of patients
with oesophagitis improve spontaneously, 50% have
persistent oesophagitis, and 10% progress to Barrett’s
metaplasia.1,2 Between 0·5 and 2·0% of adults in the
western world have Barrett’s metaplasia which is a mucin-
secreting columnar epithelium that lines the distal
oesophagus.3 Most people develop Barrett’s metaplasia in
adult life, mainly as a result of duodeno-gastro-
oesophageal reflux disease, although any insult that causes
distal oesophageal irritation, such as chemical injury, also
predisposes to metaplasia. Genetic factors may
occasionally play a part in a small proportion of Barrett’s
metaplasia because it has a familial association and occurs
in twins.2 Oesophageal metaplasia is thought to give rise to
most, if not all, oesophageal and gastro-oesophageal
junction adenocarcinomas with the rate of neoplastic
change each year between 0·2 and 2%. The resulting
adenocarcinoma has a uniformly poor prognosis. Once
diagnosed, patients have a median survival time of less
than 1 year; fewer than 10% of patients survive for more
than 5 years despite combined chemotherapy and surgery.
The ideal requirement is to detect lesions at an early stage
because surgical resection has proven survival benefits.4

Conventional clinical risk factors for the development
of Barrett’s adenocarcinoma are neither sensitive nor
specific enough for the classification of individuals at high
risk (panel 1).5–15 Therefore, surveillance of all surgically fit
Barrett’s metaplasia patients is required, which is neither
feasible nor cost effective.16 Additionally, treatment of
both benign metaplasia and the associated cancer is
expensive, and attention has centred on understanding
basic biology so that novel intervention and therapeutic
strategies can be identified.
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There has been renewed interest in primary prevention
strategies aimed at prevention of the initiation of Barrett’s
metaplasia and detection of additional risk factors that
more accurately predict the subgroups which will progress
to malignant disease (figure 1).17 Molecular changes in
p53, p16, and cyclin D1 overexpression, decreased
E-cadherin expression, and loss of heterozygosity of the
adenomatosis polyposis coli (APC) gene have been
detected in dysplastic Barrett’s metaplasia and could be
used to identify individuals at high risk of developing
cancer. These changes could be important because: p53 is
associated with the regulation of programmed cell death
(apoptosis); p16 and cyclin D1 regulate the cell cycle
(especially the G2/M transition phase); E-cadherin is a
transmembrane glycoprotein essential for cell-cell
adhesion; and APC affects intracellular transcriptional
protein concentrations such as �-catenin, as well as
several other functions. Identification of these alterations
remains in clinical research and is not currently used in
routine clinical practice.

Two biological issues have been identified in disease
progression: the balance between cell proliferation and
apoptosis in determining clonal expansion of metaplastic
or malignant cells, and the role of altered cell adhesion in
remodelling inflamed Barrett’s metaplasia. We will
discuss the role of environmental factors that might
modulate clonal expansion and mucosal remodelling—
especially bile acids acting on the apical membrane of
metaplastic cells, and cytokines acting on the basolateral
membrane.

Oesophageal stem cells
Barrett’s metaplasia consists of a simple columnar
epithelium that is folded to form glandular invaginations
in the mucosa. Cells that are shed from the epithelial
surface into the lumen are replaced from below by new
cells as a result of stem-cell division. Stem cells can self-
renew (clonogenic) and produce indefinite numbers of
differentiated progeny. These progeny, termed transit
amplifying cells or daughter cells, can undergo a finite
number of divisions, but each time they divide they lose
some of their capacity for self-renewal (non-clonogenic).
Stem cells can be viewed as seed cells whose progeny
colonise the entire epithelium. We believe that metaplasia
and dysplasia arise from the stem cells of the native
oesophagus or adjacent oesophageal glandular tissue.
These stem cells are the only permanent residents of the
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The rate of oesophageal adenocarcinoma is increasing in the western world and has a poor prognosis mainly because
individuals present at a late stage. Attempts to intervene at an early stage of tumour progression have not proven cost
effective, although lesions identified during surveillance programmes have a better prognosis. As a consequence,
there has been renewed interest in strategies that might prevent the precursor lesion Barrett’s oesophagus.
Furthermore, there is an improved understanding of genetic and environmental interactions necessary for the clonal
expansion and propagation of metaplastic premalignant lesions. Clearly, three mechanisms promote cancer
progression—inheritance of germ-line mutations or polymorphisms, sporadic mutagenesis, and local epigenetic
alterations. Locally produced cytokines and bile acids in the refluxate create a microenvironment that sets the scene
for metaplastic transformation of the oesophageal epithelium, mainly by directly affecting metaplastic stem cells.
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epithelia and are induced to undergo altered
differentiation as a result of chronic epithelial damage.17

The development of metaplasia and progression to
adenocarcinoma occurs over a long period, enabling time
for successive genetic events to take place.

Apart from stem cells most other proliferative
gastrointestinal cells are transitory (3–10 day turnover)
and are unlikely to play a part in cancer development. Our
group has previously shown that squamous stem cells are
located in the basal compartment of the normal squamous
epithelium, especially at the tips of the papillae. There are,
however, no studies identifying the location of stem cells
in the metaplastic Barrett’s epithelium.

The tissue of origin for Barrett’s metaplasia is not clear
and three theories exist. First, the de novo metaplasia theory
is that the stem cells of inflamed squamous mucosa in the
exposed papillae are damaged (figure 2). The resulting
phenotypic or metaplastic change in these cells produces
Barrett’s stem cells. The parallels between the formation of
Barrett’s metaplasia in squamous epithelium and mucinosis
in the squamous vagina lend support to this theory.18

Second, the transitional zone metaplasia theory is that
cells at the gastro-oesophageal junction (transitional zone)
colonise the gastric cardia or distal oesophagus in

response to noxious luminal agents (figure 1). As an
indicator of the pluripotency of transitional zone cells,
Sampliner and colleagues19 reported that these cells can
express a columnar phenotype in the oesophagus and a
squamous phenotype in the gastric cardia in response to
oesophageal injury. Similarities exist between the
structure of the gastro-oesophageal junction and
transitional zones in other parts of the body such as the
anal canal, uterine cervix, and the prostate gland, where
the boundary between two different epithelial tissues is
usually highly variable.20

Third, the duct-cell metaplasia theory is that stem cells
located in the glandular neck region of oesophageal ducts
might selectively colonise the oesophagus when squamous
mucosal damage occurs (figure 1). The basis for this
mechanism of metaplasia is the ulcer-associated cell lineage
that occurs adjacent to ulceration in the gastrointestinal
tract.21 A heterogeneic stem-cell response might be
predetermined by regional characteristics of the stem cells.
For example, cells arising from the transitional zone of the
gastro-oesophageal junction might have increased
premalignant potential in a similar manner to cells in
transitional zones of the cervix and anal canal (panel 2).

Although these differences in stem-cell biology might
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Panel 1: Clinical risk factors for Barrett’s adenocarcinoma

Highest risk Lowest risk Refs

Sex Male Female 5
Age (years) >45 <40 6
Length of Barrett’s metaplasia (cm) >8 <3 7
Duodeno-gastro-oesophageal reflux Severe and frequent* Mild and infrequent† 8
Chronicity (years) >10 <1 8
Race White Black 9
Body-mass index Obesity Normal weight 10
Family history Gastric cancer None 11
Drug therapy Nitrates, benzodiazepines, anticholinergics, theophyllines Non-steroidal anti-inflammatory drugs 12
H pylori Absent Present 13
Smoking Heavy smokers Non-smoker 14
Mucosal damage Ulceration or stricture in Barrett’s metaplasia Intact mucosa 15
*More than three times per week, †less than once per week.
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Possible locations of stem cells of the gastro-oesophageal junction: basal zone of the squamous mucosa, necks of oesophageal
glands and the transitional zone region

Possible locations of stem cells in Barrett’s metaplasia

Figure 1: Epithelial compartments from which Barrett’s metaplasia arises
Initial causative stimuli: noxious stimuli resulting in carditis might expand the transitional zone cells (A), or gastro-oesophageal reflux might result in
oesophagitis causing damage of squamous stem cells (B), or mucosal ulceration might result in expansion of the ulcer associated cell lineage that arises
from oesophageal glands (C). Barrett’s mucosa does not usually exist in the oesophagus. Native squamous oesophageal epithelium, oesophageal glands
and the transitional zone epithelium are located next to Barrett’s metaplasia and are therefore probable tissues of origin.



For personal use only. Not to be reproduced without permission of The Lancet.

account for regional differences in cancer risk such as
increased frequency of adenocarcinoma at the gastro-
oesophageal junction, the stem cells require extrinsic
factors to initiate and maintain clonal expansion. One
important event, which is unknown, is how the initiation
of the disease occurs. However, investigators have
described some of the extrinsic factors which cause
changes in metaplastic stem cells, resulting in colonisation
of the epithelium and progression to adenocarcinoma.
Two such environmental signals that might modulate this
event are cytokines in the inflammatory cell infiltrate and
gastric acid and bile acids in the refluxate.

Clonal expansion
After the initial selection or generation of a metaplastic
stem cell, clonal expansion takes place, which depends on
the control of stem-cell number per gland. The number of
stem cells is usually highly controlled so that the
production of new cells does not upset homoeostatic
balance. However, knowledge of stem-cell biology in the
intestine has shown that any abnormality in stem-cell
division causes extreme alterations in glandular
organisation, structure, and function (figure 2).22 Usually
stem-cell division results in two new cells, one stem cell
and one transit cell, which eventually undergoes apoptosis

after a series of finite divisions. Alternatively, under
special circumstances such as mucosal irritation and
ulceration, stem cells can divide to produce two stem
cells.

Schmidt and colleagues21 believe that when the
proliferative activity of a gland passes a certain threshold a
second, and unknown, independent signal induces the
gland to bifurcate in two (starting at the base), termed
gland bifurcation. Whereas the production of two
functional stem cells is generally associated with glandular
bifurcation, the production of two transit cells might
result in glandular hyperplasia followed by glandular
extinction or atrophy.

Ultimately these bifurcating glands, together with
neighbouring identical glands, divide again producing a
large contiguous group of epithelial cells with a common
genotype, in a similar way to clonal colonisation of the
colon by aberrant crypt foci. This large group of epithelial
cells is highly variable in different tissues, being about
1 cm2 in the stomach and colon, and less than 0·3 cm2 in
the small intestine.23

The squamous oesophagus has a monoclonal pattern of
proliferative organisation, as confirmed by work on
glucose-6-phosphate dehydrogenase.24 However, in the
stomach there are regional variations in clonality along a
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Panel 2: Features of three tissues that might give rise to Barrett’s metaplasia

Tissue type Phenotype change Malignant risk Analogous metaplasia

Native oesophageal mucosa Squamous to columnar Low Vaginal mucinosis
Transitional zone cells Mixed squamous and columnar High Cervical metaplasia
Oesophageal gland duct cells Columnar to columnar Very low Ulcer associated cell lineage

In each example of oesophageal tissue another analogy of metaplastic change exists in other regions.

p division

r division

Stem cell division
results in two
stem cells:
causes gland
bifurcation

Stem cell division results in
one transit cell and one
stem cell: causes 
gland homoeostasis

q division

Stem cell division which
results in two transit cells:
causes gland atrophy

gland
extinction

- stem cell

- transit cell

Figure 2: Role of stem cell number in controlling glandular phenotype
The fate of stem cells after their division is vital in remodelling the epithelial architecture of Barrett’s mucosa. Usually one stem cell will give rise to one
stem cell and one transit cell (r division), which will result in tissue homoeostasis. Under other conditions two stem cells (p division) or none (q division)
might be produced resulting in gland bifurcation or gland atrophy.
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proximal to distal gradient. For example, fundus glands
are thought to be polyclonal, whereas in the antrum they
are monoclonal.22 Zonal proliferative variations could also
be present along the proximal distal length of Barrett’s
metaplasia. The reasons for these differences are
unknown but might represent the ability of adjacent
clones to have a biological advantage that makes them
outgrow the other clones. This process usually takes many
years. In Barrett’s metaplasia, however, once metaplasia is
initiated it tends to colonise the mucosa quickly.25 Usually
maximum proximal colonisation takes place within 3
years, with only 5–10% of metaplasias progressing in
surface area thereafter.26

This rapid colonisation is similar to that seen in other
inflamed epithelial tissues such as ulcerative colitis. Rapid
colonisation might be due to non-bifurcating mechanisms.
In this respect one theory that should be tested is the role of
lateral migration of individual stem cells into neighbouring
glands, colonising tissue areas by proliferation. This
process of lateral migration and rapid clonal expansion has
been reported in other epithelia such as the Borst-
Jadassohn-type intraepidermal carcinoma in Bowen’s
disease and urothelial dysplasia.27 This rapid clonal
expansion seems, however, confined to lateral migration of
dysplastic tissues, including Barrett’s metaplasia rather
than the process of gland bifurcation noted in benign
metaplastic expansion (J Jankowski, personal observation).

Crypt bifurcation and Barrett’s metaplasia have both
been reported to occur in the oesophagus of previously
unaffected individuals within several months of initiation
of chemotherapy or radiotherapy.28,29 Metaplastic stem
cells can respond to exogenous stimuli and seem sensitive
to DNA damage, and can undergo apoptosis as a result of
p53-mediated mechanisms. The growth of a lesion is
determined by a balance between the rate of cell division
and the rate of cell death. Therefore, genetic mutations
that reduce the probability of apoptosis, such as p53 and
p16 mutations, loss of heterozygosity of the adenomatous
polyposis gene, or abnormal chromosomal number
(aneuploidy), are important aspects of the evolution of a
cancer (figure 3).30 These mutations support the dogma
that cancers evolve initially by a series of finite increases in
cell population and explains the long lag periods between
the initiation and subsequent progression of most
cancers.31

Role of bile acids
Gastro-oesophageal reflux of acid and bile are the
predominant initiating factors in Barrett’s metaplasia,
although the precise mechanism of cytotoxicity is unclear.
Partly regressed metaplastic mucosa might be induced by
ablation of acid (and bile) reflux with either proton pump
inhibitors or antireflux surgery.32 However, a series of in-
vitro experiments showed that intermittent exposure to
acid causes epithelial changes, which could be interpreted
as selecting poorly differentiated cells with increased
proliferative potential.32 Additionally, there have been
similar findings in patients taking proton pump inhibitors
with incomplete acid suppression.33 Investigators have
concluded that the population of patients with Barrett’s
metaplasia represent a heterogeneous group with a
variable response to proton pump inhibition despite
symptom control.

At least 35% of patients fail to achieve normal
intraoesophageal pH on recommended doses of proton
pump inhibitors.33 Although this treatment is highly
effective in healing squamous oesophagitis, it does not
convincingly reverse or halt progression of Barrett’s
adenocarcinoma.34 Conventional acid-suppressing drugs
seem to have succeeded in suppressing symptoms but
might have failed to inhibit the evolution of preneoplastic
Barrett’s metaplasia. In this respect attention has turned
to the role of bile acids in the generation of Barrett’s
metaplasia and its cancer.

Evidence suggests that bile acids alone could be highly
important in Barrett’s metaplasia, especially since most
bile acids are active in the refluxate.35 First, the
development of accurate portable spectrophotometers and
sensitive bile salt harvesting methods have shown that
reflux of duodenal juice containing bile acids is more
common than results of previous investigations suggest.35

Second, Garewall and colleagues36 have shown that
conjugated bile acids (acidic steroids with detergent
properties) might exacerbate oesophageal mucosal injury
either alone or in combination with acid, both in vitro and
in animals. Third, neoplastic progression of Barrett’s
metaplasia has been reported in several patients who had
bile reflux without any pathological acid reflux.37

Furthermore, increased oesophageal exposure to total bile
acid correlates with worsening mucosal damage, the
appearance of Barrett’s metaplasia, and especially the
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oesophagitis metaplasia dysplasia carcinoma

bile-acid reflux cytokines

*p53 mutations p16 mutations
p53 mutations

aneuploidy
multiple aneuploidy
RERs

APC LOH

cell cycle
G1-S and G2   and apoptosis

cell interactions
adhesion catenins

Figure 3: Apoptosis and adhesion in progression of Barrett’s metaplasia
Progression of oesophageal cells to cancer follows the metaplasia-dysplasia-adenocarcinoma sequence; characteristic alterations in cell survival and
adhesion occur. LOH=loss of heterozygosity. RERs=random errors of replication. APC=adenomatous polyposis coli gene. *Early p53 mutations unlikely to
be important in initial clonal expansion because inhibition of apoptosis (hallmark of p53 dysfunction) is not seen until late dysplasia.
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extent of this disease.38 Fourth, bile acids have also been
implicated in the promotion of goblet-cell-containing
metaplasia in other gastrointestinal epithelia, including
the stomach, duodenum, intestine, bile ducts, and the
oesophagus.39

Potent acid-suppressing medication might increase the
effects of unconjugated bile acids either directly by
increasing bile acid transformation or bacterial flora or
indirectly by increasing their activity.36,39 Evidence from
animals suggests that acid suppression might increase
clonal progression in some patients with bile reflux. The
mechanism of bile acid induced progression is complex
and involves the induction of cyclo-oxyenase-2 (COX-2)
expression which is important in cell survival.40

Additionally, deoxycholic acid stimulation in vitro causes
apoptosis in metaplastic cells expressing wild-type p53,
whereas cells with p53 mutations are resistant to bile-acid-
induced cell death (J Jankowski, personal observations).
All evidence suggests that bile acids may have a much
greater role in the progression of Barrett’s dysplasia and
the development of cancer than hitherto thought. Why
does metaplasia not regress once the external stimulus for
its initiation is removed? This question can be answered
by evidence indicating that a chronic inflammatory cell
infiltrate exists in Barrett’s metaplasia patients treated by
ablation therapy, and may maintain and promote the
metaplasia.

Mucosal inflammmation
Mixed inflammatory cell infiltrate is a common feature of
acid and bile damage to the native oesophageal mucosa,
especially around the stem-cell rich areas of the basal
mucosal compartment and papillae.41,42 This infiltrate is
initially composed of acute inflammatory cells.
Subsequently T lymphocytes become more numerous,
especially in tissues in which metaplastic foci develop.42

Once duodenal gastro-oesophageal reflux disease is
corrected by powerful acid suppressing drugs Barrett’s
metaplasia never regresses totally and maintains a mild
chronic inflammatory infiltrate.43 After endoscopic
ablation therapy, persistent Barrett’s metaplasia is
associated with a T-cell infiltrate, which is absent in the
neosquamous islands;43 thus lymphocytes might not be a
secondary reaction to aberrant epithelial integrity or injury
but might be important in the persistence of Barrett’s
metaplasia.44

Associations between inflammation and gastrointestinal
metaplasia include helicobacter-positive gastritis with
intestinal metaplasia;45 pancreatic metaplasia with carditis
of the gastro-oesophageal junction;46 pancreatitis with islet
cell metaplasia or ductal metaplasia;47,48 colonic metaplasia
with ileal pouches;49 gastric metaplasia with duodenitis
and coeliac disease;50 diversion colitis with Paneth cell
metaplasia;51 squamous metaplasia with gastric
ulceration;52 ulcerative colitis with metaplastic polyps;53

and gastric carditis with intestinal metaplasia.54

Inflammation due to foreign bodies or parasites can
specifically induce goblet cells at the expense of other
metaplastic cell lineages.55,56 The close association between
lymphocytic cells and dysplasia suggests that they are
necessary for neoplastic progression. The inflammatory
cell infiltrate in oesophagitis and Barrett’s metaplasia
might contribute to DNA damage by the generation of
reactive oxygen species (free radicals). High levels of free
radicals have been identified in ulcerated gastro-
oesophageal mucosa57 and can induce cytokines, which
regulate the extent and phenotype of the infiltrate. Free
radicals might also act as, or induce, growth and survival
factors for epithelial cells.58 Moreover, the inflammatory

infiltrate can induce increased expression of Fas ligand on
metaplastic cells, which might protect from immune
surveillance.59 Furthermore, cytokines can regulate
matrix-degrading enzymes such as metalloproteinases,
which affect the ability of malignant cells to invade
surrounding tissues.60 Thus, there may be two
fundamental stages in the creation of Barrett’s metaplasia:
(a) mutation of genes by chromosomal or microsatellite
instability leading to dysfunction of p53 in severe
dysplasia; (b) promotion and propagation of metaplastic
clones by an inflammatory cell infiltrate. 

Cytokines induce epithelial proliferation, survival, and
migration, and have been implicated in cancer progression
in animals as well as correlated with increasingly poorer
stages of epithelial cancers in man. Inflammatory cells also
produce cytokines such as tumour necrosis factor �,
(TNF�), which regulate the extent of proliferation in
murine intestine.61 Furthermore, mice that do not express
the gene encoding TNF� (TNF� knockout mice) are
protected from epithelial damage and cancer from
environmental agents.62 Many cytokines are produced by
the inflammatory cell infiltrate and the epithelium in
Barrett’s metaplasia,44 including transforming growth
factor � (TGF�), interleukin one � (IL-1�), interferon �
(IFN�), and TNF� (R Harrison, personal com-
munication). Work investigating the association between
Helicobacter pylori and gastric cancer has shown an
inherited predisposition to gastric cancer.44 Infection of
the gastric corpus by H pylori is related to the
development of hypochlorhydria, atrophy, and malignant
disease, whereas infection of the antrum is related to the
development of peptic ulcer disease. This divergent
response cannot be fully accounted for by bacterial
virulence alone and evidence suggests that the divergence
is related to the host response. Investigators have shown
that enhancing polymorphism of IL-1� gene cluster is
associated with an increased risk of developing gastric
cancer.63 Patients with such a polymorphism have an
enhanced IL-1� secretory response to H pylori infection,
and one proposal is that increased IL-1� (a suppressor of
gastric acid production) allows progression from atrophy
to malignant disease.

Analysis of oesophageal cancer has shown that tumour
stage and invasiveness are associated with reduced
expression of E-cadherin (cell adhesion and tumour
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Figure 4: Microenvironment of the oesophageal stem cell
The initiation of clonal expansion might take place as a consequence of
TNF� secretion from the inflammatory cells and TGF� from adjacent
damaged epithelial cells. Both these molecules induce the transcription
factor NF�B and catenin-regulated signaling in metaplastic cells, thereby
increasing COX-2, c-myc, and cyclin D1 which increase proliferation and
decrease apoptosis.
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suppressor, figure 3).64 The role of E-cadherin in
oesophageal cancer is lent further support by similar
studies, which show that certain cases of familial diffuse
gastro-oesophageal cancer are related to germline
mutation of the E-cadherin gene that results in loss of
expression of the protein on the cell membrane.65

E-cadherin associates with the multifunctional cytosolic
protein �-catenin via membrane adhesion complexes.
Cytokines such as IL-� and TNF� may reduce 
E-cadherin and transiently increase �-catenin-regulated
transcription of oncogenes. Transcriptional action of 
�-catenin relies on it being tyrosine phosphorylated by
endogenously produced TGF� in the metaplastic cells65

and facilitates transformation and survival of abnormal
cells. These cells have a survival advantage because of the
increased expression of molecules such as COX-2 and
cyclin D1 (figure 4).66,67 These molecules are also
implicated in chronic inflammation, cell survival, and
epithelial cell growth.

Conclusion
The process of initiation, clonal expansion, and aberrant
epithelial biology explains not only why cancer evolution
is a multistage process but also why there is a long lag
phase between initiation of metaplastic change and cancer
development. A combination of aberrant biology, site of
origin, and resistance to environmentally induced
apoptosis could explain the heterogeneity and malignant
potential of metaplastic cells. We suggest that during the
initiation phase of Barrett’s metaplasia, there is a
generation and selection of clones, which are able to resist
the adverse effects of duodenal or gastric reflux disease.

Mutations that inhibit bile-acid-induced apoptosis for
example, in p53 will be an advantage to the initiation of
dysplastic growth. A striking chronic inflammatory cell
infiltrate, expressing IL-1� and TNF�, is associated with
persistence of Barrett’s metaplasia as well as the
development of dysplasia and adenocarcinoma. Epithelial
changes resulting in unpredictable neoplastic behaviour may
be induced or potentiated as a consequence of interstitial
inflammation. There is a molecular basis for implicating
chronic inflammation in cancer development. A greater
understanding of the molecular changes involved in chronic
inflammation might lead to changes in the identification,
diagnosis, and management of those at risk of developing
malignant disease. The identification of E-cadherin
mutations and TNF� polymorphisms might provide a basis
on which to offer screening or expert clinical genetic
counselling to individuals at high risk with conventional risk
factors, including strong family history, and the presence of
metaplasia or dysplasia. Finally, clinical specialists have
stated that long-term studies are urgently needed to
elucidate whether intervention with potent acid-suppressing
drugs, anti-inflammatories, or antireflux surgery will prevent
progression of established Barrett’s metaplasia (H Barr and
S Attwood, personal communication).
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